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ABSTRACT 

The propagation of infinite trains of Symmetrie Harmonie waves 

traveling in infinitely long,   right circular cylindrical shells is investigated 

on the basis of the three-dimensional theory of elasticity.    The shells are 

assumed made of three concentric,   transversely isotropic cylinders,  each 

of different materials,   bonded perfectly at their interfaces.    The frequency 

equation is established by representing the displacement field in each 

cylinder in terms of potential functions and satisfying the Navier equations 

of motion and the boundary and interface conditions of the cylinder. 

The frequency equation has been programmed for numerical evaluation 

on an IBM 7044/7094 DCS computer,   and the influence of the mechanical 

properties of the layers on the frequencies of the first few modes is investigated. 
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Cylindrical coordinate 

Non-dimcnsionalyzcd radia1 coordinati- 

Radii of the shell layers (see fig.   1) 

Nondimentionalyzed Radii of the shell layers 

Thickness of i      layer 

displacement of components in the r and ■ 
respectively 

Component of strain,   defined in eq.  f l] . 

Component of stree defined in Eq.  f l] . 

density 

Elastic constants 

Nondimensional elastic constants 

Wavenumber in the axial direction 

non-dimensionalized frequency 

circular frequency 

non-dimensionalized wavenumber 

Time 

"velocities" 

nondimensional velocity ratios 

radial wave numbers (see equation [H]) 

st'e equations f l'*] and [ZO] 

zero order Bessel function of the first 
or  second kind   respectively 
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INTRODUCTION 

The frequency t't|uation for harmonic waves travrling in traction-frt-f 

infinitely lonf»,   isotropic circular cylindrical shflls has been established 

on the basis of the three •dimensional theory of elasticity and has been 

evaluated numerically by Gazis (4) and Greenspon ; 5).    More recently, 

Mirsky investigated the propagation of harmonic waves in circular cylindrical 

shells made of transversely isotropic and of orthotropic matericals (9) (10). 

The increasing demand for structural components of aerospace vehicles 

having a high strength to weight ratio and being capable of withstanding 

high temperatures,   has resulted in extensive use of multi-layered shells 

and in considerable interest in the propagation of harmonic waves in such 

shells.    ArmenSkas (1) (Z) presented a unified treatment,   on the basis of 

the theory of elasticity,   for harmonic waves of an arbitrary number of 

cicumferential nodes traveling in two layered isotropic shells.    Keck 

and Armenikas (7) investigated the propagation of harmonic   axisymmetric 

waves in sandwich isotropic shells.    Moreover,   a number of approximate- 

theories for two and three layered shells were established (3) (6) (11). 

In this investigation, the frequency equation for propagation of 

trains of axisymmetric nontorsional harmonic waves in infinitely long 

shells,   made of three concentric cylinders of different transversely 

1 
Numerals in parentheses refer to References at the end of the report 



Isotropie materials,   Is derived on the basis of  the  linear theory of 

elasticity.     It   is  shown  that  as  in  tue  case of   Isotropie shells,   for 

waves having infinite axial wave length,   the frequency equation 

degenerates  into two independent equations  for uncoupled longitudinal 

shear and uncoupled radial motion. 

The  frequency equation has been programmed   for numerical 

evaluation on an  IBM 7044/7094 DCS computer,   and the- influence of the 

mechanical properties on the frequencies of the first few modes 

is   investigated. 



SOLL'TIONS OF THE EQUATIONS OF MOTION 

In the ensuing derivations, the following notation for the components 

of stress and stain will be used 

'UV t22'T2; T33"V :23"V 'jl'V T12"Tb' UJ 

eli-e1. e22-e2. ^^y   U^—^   U^-y   ^u^  ' 

In terms of this notation, Hooke's law for a general anistropic body 

may be written as 

Ti " cijej  (i' J " ^ 2 6^ l2i 

For a transversely  Isotropie body,   in particular,   these  relations 

reduce  to 

Tl " Cliel + C12e2 * C13e3' 

T2 " C12*l + Clle2 + C13e3* 

T3 ' C13el + C13e2 + C33e3' 

[3] 

where 

C66" lj(cll " C12)- 

The assumption that the strain energy density is a positive definite 

quadratic function of the components of strain imposes the following 

restrictions on the elastic constants 

c  > 0, c,  -• Ü, c   > 0, 
11      33      44 

cll2 " c122 *  ü- Cll C33 " C132 > 0' W 

Cll C33 + C12 C33 " 2C132 > 0- 

, 



Equations [3j reduce to those for an Isotropie body by employing the 

following relations between the elastic constants 

C33 ' Cll'  C12 " C13' CA4 " c6b- 

The components of stress may be obtained in terms of the components 

of displacement by substituting the strain-di placement relations into tiu> 

constituative equations [3j.  These, in turn, may be substituted into the 

stress equations of motion to obtain the following displacement equations 

of motion 

cll(ur.rr + ur.r/r " ur/r2) + c6b ur,öö
/r2 + c44ur,zz + 

2 
(c.     + c,-)u        /r - (cti.  ♦ c,,)u      /r    + (c      + c    )u ■ pu  , 

6b        12'   ö,re 66 U    e,e 13        4«4    z.rz r 

2 2 
(c      ♦ c,   )u        /r ♦ (c..  ♦ c^.)u    ^/r    ♦ c,,(u + u„    /r - u /r ) 

12        66    r.rö 11        66'  r,e' b6v  o,rr        e,r' e 

2 ♦ c,,   u^ ÖO/r    ♦ c^u^        ♦  (c,, + c/./.)u,  ^,/r " PUg» ii   ö.ee '44  e,zz 13 44'   z,ez 

i5j 

(c,_ + c.,)   (u + u      /r + u        /r)  * c.^u ■»• 
13        44'       r,rz        r,z b,rz 13 z,zz 

c. .(u + u       /r ■»• u        /r )  - pum. 
44    z.rr        z,r Zt90 z 

Here  p  is  mass  density per unit  volume;   subscripts  preceeded by  a 

comma denote differentiation with  respect   to  the space  cuurdinates.     The 

dot indicatrs diff« rt-ntiation with respect to tim«-.    It inn ht- shown (H) th.if 

for axisymmrtric motion,   Eqs. fs] ar«- satisfied by a displac t-mmt fitld 

of thr following form 

ur -   (c13 + c^)i(r)   r  cos(kz  -  ^t), «>. 



i 2 ,2 
u, "— tcV      $(r)  + k^C^X - c    )  ^(r)J sin (kz - uit). [6 coat] 

where the  potential  function >>(r)  must  satisfy the equation 

(V^ + p2)   (Vi
2 + q2)  ^(r) - 0. [7] 

Here 

7
2.^4 + iiL. 
1      ^J      r dr  ' dr 

and u and k are  the frequency and the axial wave number of tne wave, 

respectively.     The radial wave numbers p and q are given by 

[•] 
'11 44 

wnere 

A - c11(» - C33) + c^U - c44) ♦  (c13 ♦ c44)
2. 

and 

fl " 4cll C44(n - ^   (o " c44)  ' 

pu)2/k2. 

[9] 

2 
The plus sign in equation  [7j  refers to p  .    Notice,  when the radicand 

2 
A    - ü is  negative,   that  the radial wave numbers p  and q become  complex.    Thus 

for a certain range of the values of the elastic constants there is a range 

of values of real m for which the   radial wave numbers p and q become  complex. 

In the case of  Isotropie elastic shells,   the  radial wave numbers do not 

assume complex values  for any real value of m.    Thus,  it  seems appropriate 

to classify   transversely Isotropie materials as (a)   less anisotropic   if 

their mechanical properties are such that p and q do not become complex for 

any value of m,   (b) more anisotropic if   their mechanical properties are such 

that p and q may become complex for a certain  range of m. 

1 



The operators In equation    [7] are Bessel operators  and,   conse- 

quently,   their solution is given  in terms of  the zero order Bessel functions 

of  the first and second kind with real,   complex or  Imaginary argumentJ, 

depending on whether p and q are real,  complex or imaginary.   Therefore 

in order  to specify the real solutions  for $,  and the displacement and stress 

fields,   it is necessary to establish the range of the material  properties 

and  the range of values of the wave parameters   (positive values of u and K) 

for which p, q are real,  imaginary or complex. 
2 

The  radicand A    - B of equation [8]  vanishes if m satisfies  the equation 

"A  .    (C11C33 
mj 

" C442)(C11 " C44)  "  (C11 + C44)(C13 + 'J* 

2 
(cll  "   CLÜ) 

2(c13 ♦ c44) [10] 

/cll c44  t(ci, + «U>     -  (ci] " C
AA

)(
S. ' «Z>]       ' 2     '  ni ^4   L ^13 " C44^ ^11 " C44Mt33 ' C^ 

ccll      c44; 

For ordinary engineering materials,  it may be assumed that c      > c...     On 
33 44 

2 
this basis it can be shown that tne radicand A    - B cannot vanish for values 

2 
of m greater than c,,.     Thus,   for a given material,   the radicand A    - B 

becomes negative  for values of m satisfying 

m    < m < ni    < c if ra,   > 0, 
1 2        44 l 

0 ^ m < m,  < c if m    < 0. 
*  '    44 * 

2 
If the  inequality,   A    -  ß  < Ü,   is solved  for c     ,  the  following  inequality 

results 

  2      2 
[c      + c..)   -  /c,. (c^   - m)J [(cio + c,,)   + /c     (c..   - ni)J 

13 44 44     44 13 44 44    44 r.jl 

(c3^ - m) *  Cir (c33 - ra) 



The cross-hatched region in Fig.  1 represents the locus of the values 

of m and c..  satisfying this inequality.   Note,  that when m = 0,  inequality 

[IZ]   reduces to 

C13    < -   (c13 + 2c44)2 

C1I " 
C33 c33 

whereas,   when m = c..,   inequality f 12 ] yields 

[13] 

11 

(c13 + c44) 

C33-C44 

[14] 

The value of m corresponding to the maximum value of c..,   for 

which the radicant A    - B vanishes,  can be obtained by setting the derivative 

of 7.. with respect to m (see fig.  1) equal to zero. 

d(en) 

dm 

This results in 

d 

dm 

Ac13+c44+( 

V C33 

fc44^c44 * m) 1 
m 

1.)... [15] 

and 

m =   c 44 
for T.. max 

(c33 - C44)^ 

(C13+C44)<. 

11 max 44 

(C13+C44) 

c33 " C44 

[16] 

From equation ( 10 ] it can be seen that the maximum value of T. . 

is also obtained when m = m. = m_. From the aforegoing discussion we 

may conclude that if the elastic constants of a material satisfy the relation 

c   >c   +    13   44 ri4 
c33 "c44 



8 
2 

the radicant A    - B is positive for all values of m and,   consequently,  the 

radial wave numbers p and q do not become complex for any values of m. 

In this case,   the material has been classified as less anisotropic.    If, 

however, the elastic constants of a material do not satisfy inequality f 17 ], 
2 

then for a certain range of values of m the radicant A    - B will be negative 

and p and q will be complex.    In this case,   the material has been classified 

as more anisotropic.   Referring to equation [8],   it can be seen that p 
2 

is the conjugate of q   .    Consequently,   two pairs of complex values of p 

and q are found.   It can be shown that any two of the four roots satisfy 

the requirements of the equations of motion.    The value of q used in this 

analysis is the negative complex conjugate of p. 

From Eqs. [9],   it can be deduced that for m > c-, the radial wave 

numbers p and q are real,  while for c. - > m > c,.,   p is real and q is 

imaginary.    Finally,  for c.. > m,  the non-complex values of p and q are 

both real if A > 0 or both imaginary if A < 0.    The parameter A vanishes if 

CI1 + C44 

This relation is plotted in Fig.   1.   For values of m less than m.,   A is 

negative. 

It can be seen,  that for less anisotropic materials and for more 

anisotropic materials with elastic constants satisfying the relation 

^^ 

I 

<cu*u/ 
c33 " C44 



r 

Che parameter A Is negative  for all values of m smaller  than c    .     For 
44 

these materials, for c.. • m, the non-complex values of p and q are 
44 

imaginary.  For more anisotropic materials with elastic constants 

satisfying the relation c,, < (c,, + c//) /(c,, - c,,). the parameter A 
11    13   M    3J   44 

is positive for c  > ra > n».  Therefore, in this range, p and q are both 
44       2 

real.  On the basis of the foregoing discussion, the radial wave numbers 

p and q may be written in the following form 

p - (t^ ka q - (e^1* kfi. [19] 

For less anisotropic materials and for more anisotropic materials, if 

m < m or m > m , the parameters a and 3 are given by 

i)   /Tc 
11 C44 

t/7~l [20] 

and alternatively,  for more anisotropic materials with m    < m  < m    (here rn. is 

replaced by 0 if m. < 0) a and 3 are taken as 

[-    B1 (± cos  9 + i sin 8)   , 

with 

f ■ -I— (m - c    ) -i-    (m - c    ) 
|C11 C44 

[21] 

[22] 

and 

9 -    |    tan"1 
,4T7^ 

For materials with c       >  (c,, + c    )   /(c      - c,,),   the sign factors 
11    13   44    33   44 

e  (1*1,2) are assigned the values 

if  m > c 
44 

-1  if 

1  if  m > m > m 

c  > m * m 
44      2 

-1  if  m,   > m i  0, 

[23] 



10 

if  m > c 
33 

-1  if c  > n > ni 
33    * 2 

123] 
1  if  m„ > m > m 

2       1 

-1  if  m > m > 0, 

whereas, for materials with c  < (c  + c,,)  I  (c  - c..), the factors t. (i-l. 2) 
11 13   44 33   44' 

assume the values 

C I      if  m > m 

1  [-1  if  mj ^ m > 0, 

and [24] 

if  m > c 

-1  if 

if 

33 

c > m > c 
33      44 

c > m > m, 
44      1 

-1  if  m. ^ m ^ 0, 

The solution for ^ can now be written as 
r 

^(r) 
c13 + c44 

A1 Zo (kar) + fli W0 (kar) 

[25] 
+ A,, Z (kßr) + B0 W (kBr) . 

2 o        2 o 

Here, Z and W are regular or modified Bessel functions of the first and 
o     o 

second kind, respectively, depending on whether c  is 1 or -1. 

DERIVATlOiN UF THE FREQUENCY EQUATION 

Consider a shell made of three concentric cylinders of differi'nt materials 

perfectly bonded at the interfaces.  The solution obtained in the previous 

section may be applied to each layer of the shell.  The material properties 

of the layers will be identified with the superscripts "(1)", "(2)", and 

"(3)" for the inner, middle and outer layers, respectively (see Fig. 2). 



11 

For convenience, the following non-dimensionalized parameters are 

introduced. 

r,  a,  b,   c,  d »   (r,  a,  b,  c,  d) —      ,     ; - kh^/n     , 
h(2) 

/—"^ I ' 
Q - Wh(2) /p(2) /. ic^  .    üj - Uj - j  (j - r, .). 

.(i)    cll .(i)      c12 .(i)       Si di " 7^ *      2   " TTI) •     S   - 7(2)- 
44 44 44 

c   (i) c  (i) 

dIi)"'jit2)   ' d5l)  -^fe"    ' (i  =  l'2'J)     [26j 
c c 

44 44 

c   (i)  _ c   (i) (i) 
d   - L   ii 12 *(i) . alii 

6  c    (2) •     ^ ,(2) 
C44 

L 1 

The ratios  [c   '   '/ o       ]    and [c /  p       J    are referred  to as 
44 33 

"velocities" and are  denoted by v   '^and  v.     ,   respectively.     In non-dimen.s ion- 
s       d 

alized form, these velocities will be taken as 

v (i) .    v (i) 

a(l)- -a^j    and    b(i) - -^ ,    (i « 1,2,3). [27j 
v v 
s s 

The radial wave numbers may now be re-written in terms of the 

non-dimensionalized parameters as 

-(i)   J     (T)    (i) 

-(i)   /  H")    (U 
[28] 

where,   for     less anisotropic    materials and  for    more anisotrupic 



12 

materials   if m  < m    or m   ■  m   ,   the  parameters  a      and    £      are given by 

with 

1 

U)l 

T 
29 

(i) 

M) - J. 
(i) 

b<i>    c2 ■1,+^(^"1) + ?(^ + l' )■ 

(i) 

.<« .   . ^2 
d^V.U)2^ 

130] 

d)2;2 -i    . 

For"inore aniaotropic" materials with m    ■  ■  <  m    (m    replaced by 0  if 

m    <  0),     Che paraaeters a       and  ^     'are given by 

-7(i)     it cos e(i)+sin o(i)). [31 

with 

Tr(i). i'.B(i) 

(i) ,          -1          I(i)   - A(i^ 
h  tan JH L 

kW 
.32] 

The  solution of   the equations   of mot ion  given  by  equations   [6]  and 

[25]   may  be  applied directly   to each  layer of   the  cylinder.     Thus,   the 

complete  solution for   the   three-layered  cylinder will   contain  twelve 

integration  constants  A       ,   B       ,   (lslt2(3;   j"l,2).      These   constants  may  be 

evaluated  by  requiring  the  solution  to  satisfy   the   following boundary  and 

interface  conditions  of  the   cylinder. 

(i) 
rj 

Ü at   r 
rj 

33] 

(j-r,f) 



(1)        u+u 
ui    *"! 

13 

at r - b if  i -  1, 

[33 cont] 

Trj(l)  ■ Trj(l+1) or7-7lf  i.2. 

(J-r.r). 

By substitution of  the  components  of displacement and stress  into 

equations   [33],   a set of  twelve homogeneous^ llneai^ algebraic equations  are 

obtained.     For a non-trivial solution,   the determinant of  the coefficients 

of   the A        and B  ^  '  must vanish resulting in  the  following frequency 

equation 

|C     |   - 0 (i,J-l,2 12). [34] 

The non-zero elements of  the determinant  are given as 

Cll " 2 d
( 

(1)     (1)2     (1) - (DTV C    a       « Z.   U A     a)  - 

;     dL    *        ..(1)     (1)      (I)2    .   ,(1) 

ad)2 ^ 

(1) <1)- 
*5    )I0(^    «). 

'12 
2 4 ^C2^« III    (;a

(l)I)- 
o — i 

r3   d(1)I2 2 ;    d4    a ,^(1)  (1) (I)2 .(1) 
/, v       ;;   r (de a       ■♦■ d 

d^Wl) 1      1 - 5 
a(1)     ,2 

[35: 

d^)«    (;a
(1)I). 

-> o      - 

13 6 5 4 2 — 1 

UM T2 ^^MD .(i)2 .     /n      a2 .(■*•) H)- 
4 11 5 (1)^   jf 5 

- dc    )   Z  (;B       a). 
o    ~ 
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cM. 2 *<»««> ♦4<")ua):i»1<aa^)- 

(1)      2 
(1) 2 _2      (i)  (i)a(i)2       d       ^ (i) (1)_ 

- d,.    ;   a    (d,    e.    s        +     :>   -      - <r ') w   (;r   a). 
1      1    ■ 

,(l)2 ;2       5        0 

^>Ä 
d5    '   "4 

Hnr<^^-^A.^,.<»^>-Vu«»i,. 
d*1^2; 2   d'" o2 

■22      d(i)+ 70 "i   i s 

5 4 
(l)2 ;2 

5 H'1'    J2 

5 -W    o2 

C3 i* C4 i (i ' 1'2'3'A) " C2 l« Cl i (i " 1'2'3»4) with a replaced by b, 

S.i* C4.i (i " r,'6'7'8) ' C2 i» Ci,i (i " i.2»4.5) with « replaced by 

and (1) by (2), 

'51 t[lh2^l>hzl (^Db) . 
[35 cont] 

C52--i
2
ä

(1)bWi,;ä'»b,. 

c,, .-«;»'♦ dU), .»'^"v^,. 
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'54 

61 , i >   , ,.. (d  e   a 
da)+d(u    i    i   -        i0).t 

2 _ 

j—j- + d^ ') Z (ca^'b), 

62 ru    fi)   (di   'i    -  5—7+ dA   )w   ^    b)» U;+ dU)   1  1 (1)2 ;2   4    o 
5    4 

'63 1   Z / i \ ^ , z   «»    o (1)' ;' 

'64 

ll)  2 
-  (1) (1)  (I)2   d4  Q     (1)       (i)- 

i  2 (  2 «    4    o 

[35 contj 

C
e .• C

t . (J " 5.6.7.8) " cc .» CÄ . Cl ■ 1,2,3,4) with (1) replaced by (2), 5,J  6,j 3,1  o,i 

C7 «• Ca * (J " 5.6.7.8) " cb  j. cc i (i " 1.2,3,4) with b replaced by 7 

and (1) replaced by (2), 

C7 <• Ca  
(J " 9,10,11,12) •« C  , Ce  (i - 1,2,3,4) with b replaced by 

'•J  ö,J 6,i  5,i 

c and (1) replaced by (3). 

Co 4* Cin  (J " 5'6'7«8) " C,   • C   (j - 1,2,3,4) with I replaced by '»J   iUtJ 1,J    2,j 

c and (1) by (2). 

C9 i'  ClO 1 (J " 9,10.11,12) - C  , C   (J - 1,2,3,4) with 1  replaced 

by c and il) by (3). 

I 



lb 

Cu .. C12   (J - 9,10,11.12) - C2  C (j - 1,2,2.4) with a 

_ [35 cont ] 
replaced by d and (1) by (3). 

For given material properties and shell geometry, the frequency 

equation [34] IJ a transcendental relation between the non-dimensionalized 

frequency Q and the wave number \.     For any value of r,, the frequency 

equation will yield an infinite number of values of Q| each 

corresponding to a different mode of wave propagation. 

The frequency equation may be specialized to give the correct formu- 

lation for solid rods (a - 0).  In this case, the boundary conditions at 

the inner surface (See Eq.[33j)are omitted.  Furthermore, in order for 

the displacement field in layer (1) to remain finite at r ■ 0, it must 

contain no Bessel functions of the second kind.  This implies that the 

constants of integration B   (j > 1,2) must vanish.  Consequently, Cha 

frequency equation for axisymmetric waves in three-layered, transversely 

Isotropie rods may be obtained by deietinR the first and second rows .irni 

the second and fourth columns of equation [34J. 

For "more anisotropic'"' materials, within the range of values of .. 

and 5 for which the values of £ and £ are complex, the frequency equation 

will contain complex elements.  Inasmuch as ^ is the negative complex 

conjugate of £, the following relations art- valid 

J  (£ r) - (-1)°   J* (p r), 
n ^ n 3b 

i     (<! r) = (-l)n  Yn (£ r). 
* 

n 

*    * 
where J  and Y are the complex conjugates of .1  and Y . 

n     n n     n 
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If  the  i       layer of  the cylinder  ls"more anisotropicj' and   If ra is 

sufficiently small so that oi and ji are given by equation  [19],   then the 

four columns of  Eq.   134J   relating  to  the  i      layer are complex.     It  can 

be shown,   that with the exception of a constant multiplication factor, 

columns  (4i-n)   and  (4i-n+2)   (n"2,3)   are,  element  by element,   complex 

conjugate  pairs.     For instance,   if   layer 1 is complex  (i>l),   the  frequency 

equation may be written as 

1V1 ■ |oji V Gj3 V c ' ■0. l"] 

where C represents the last eight columns of the determinant and C... 

(k"l,2,3,4) are the complex first four columns of C...  These may be written 

as 

(j-1,2 12)  [38] 

G,0 - C  + i C ,   G,. - CJ0 - i C . 
J2   j2     JA*    J^   J2     j4 

Substitution Into equation [37] and expansion yields 

'V "-4 I «n ?j2 ^ <> c I "0 • l39) 

Thus,   the  problem of evaluating  the  frequency equation  for waves   traveling 

in shells made  of  "more anisotropic" materials  is essentially  identical  to 

that of evaluating  the frequency equations  for waves  traveling  in shells 

made of   "less  anisotropic" materials. 

I 
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WAVES WITH INFINITELY LON-. \XIAL WAVE LENGTHS 

When the axial wave number vanishes, the displacement field of the 

cylinder is independent of the axial coordinate.  The radial wave numbers 

reduce to 
2     2 

.(i) ._Jii 
(i)' 

and 
2  d(i) 

(i)2  d4 

1 

(i) 

cT"   c 
[40] 

and the frequency determinant can be written as the product of the 

following two determinants 

where 

Limit   |C  I - D  • D - 0, 
;-K)     iJ    i   ^ 

[41] 

and 

C21   C22 

C     C     C     C     0     0 
31    32    35    36 

C     C     C     C     0     0 
61    62    65    66 

0     0     C     C     C     C 
75    76    79    7,10 

0     0 

0     0     ü    ü 

C10,5 c;o,6 C10,9 C10,10 

c   c 
11,9  11,10 

[A2J 

c,,  c    0 
13    14 

C     C     C     C     0     0 
43    44    47    48 

C53   C54   C57   C58   U     ü 

0    0    c    c    c    c 
87    88    8,11  8,12 

0    0    c    c    c    c 
97    98    9,11   9,12 

0000 C12,ll  C12,12 

43 
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The equation D ■ 0 yields the cut-off frequencies of axisymmetric 

longitudinal shear vibrations involving only axial displacement.  In this 

case, the motion is uncoupled equivoluminal, and the displacement components 

are 

«<«  - 0. 
r [44] 

"(i)  . ^(i)2   i   A(i)   ,     ,.a)r. ^ .<:i)  v    /.(a).", 
z -P^

1
'   ! 4» J0 (P<

1,
7) + ^' Y0 (p^'Tl em Q 7. 

Notice that,   as in the case of Isotropie shells,   the motion depends 

only on the elastic constants d^. V= It £, 3). 

The equation D   = 0 represents plane strain extensional motion involving 
m 

only radial displacements 

t" ■ ^  [A*0  J.   (q'^V) + B'
1
' ».   (^r) ]  cos « t. rc 21c 21c ^45j 

;(1). 0. 
Z 

This motion is independent of the elastic constants d   and d5  and 

consequently is independent of the axial Young's moduli of the three 

materials. 
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NUMERICAL ANALYSIS 

A computer program has been written for numerical evaluation of the 

frequency equations.  The program first computes the cut-off frequencies 

on the basis of Eqs. [42] and [43], and utilizes them as starting values 

to trace the branch curves of Eq. [34] on the Q - ? plane.  For each 

assumed value of c,,   the frequency, -i,   is  Incremented by a specified amount 

Aw until a change In the sign of the determinant occurs. This indicates 

a root between the last two values of fl.  An Interval halfing procedure 

Is then executed which brackets the root to the required (pre-set) accuracy. 

Subsequently, the value of £ is Incremented by a pre-assigned increment 

Ac and, starting with a new value of Q, (computed from the slope of the 

two previously established points on the branch) the process is repeated 

and new roots are established until each branch of the frequency equation 

has been traced up to a pre-assigned value of (. For each tested value 

of ü  and c> the program uses the appropriate form of the frequency equation 

depending on whether the radial wave numbers p and q are real, imaginary 

or complex. 

(2)     (2) 
The effect of the ratio of elastic constants c., and c.  (for 

H * 11 
(2) (2) constant  a ratio of  c.)    /  c  ^      ■  7/3)   on  the  cut-off   frequencies  of  the 

first few modes is illustrated in Figs.   3 through 6.    In thrsc figures,   the 

outside and the inside layer were chosen as Boron/Epoxy (see Table 1). 

This material is "less anisotropic".   The results shown are valid for any 

values of c-,       and c.,        inasmuch as the cut-off frequenciesfequation! 

[42] and [43l]are independent of these clastic constants.    As expected,   the 
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frequencies of the longitudinal shear modes are independent of the elast'c 

(2) 2 
constants c,.       and c.-   •    Moreover,   as can be seen from Fip.   3 and 4, 

the frequency of the first longitudinal shear mode is not noticeably effected 

by changes in the axial shear modulus c44'   '.    The frequency for this 

mode is slightly larger for rods (Fig.  4) than for thick-walled shells,   I.e. 

H/R =1.0 (Fig.  3).    For values of H/R < 1. 0 the effect of H/R on the frequency 

of this mode is negligible.    Thus,   for thin sandwich shells the frequency of 

the first longitudinal shear mode is only effected by changes in the density 

ratio of the layers.    This result is interesting inasmuch as this frequency 

is employed in establishing the correction factor in Timoshenko-type shell 

theories. 

TABLE 1. - MATERIAL CONSTANTS 

Material     | Pounds Per Sq uare Inch (io)6 

1 Cl1 C
12 C33 

C44 C13 
p(lb/In ) 

Aluminum 13.46 5.76 13.46 3.85 5.76 U.1UU 

Boron/Epoxy j 3.28 1.19 30.4 1.00 0.995 0.075 
Composite 

Beryllium     j I 4.24 0.388 4.88 2.36 0.203 0.067 
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Figure  7 shows  the frequency spectrum of a sandwich shell made of 

an aluminum core and fiber-reinforced composite facings made of an epoxy 

matrix reinforced by unidirectional boron fibers.     Figure 8 shows  the 

frequency spectrum of a sandwich shell made of an aluminum core and 

beryllium plate facings.    The mechanical properties of  the layers of  these 

shells are given in Table 1.    The aluminum is Isotropie, whereas  the 

Boron/Epoxy composite and the beryllium are less "anisotropic" and 

"more anisotropic" respectively.    The ti-t, plane may be sub-divided into 

sectors by lines n= b( ^,  n= a[1,l,   and 0= —J C (i =  1. 2, 3; j = 1,2). 

Throughout each sector the radial wave numbers p and q retain their real, 

imaginary or complex character and,   consequently,   the form of  the  frequency 

equation,  in each sector,  does not change. It can be seen that the behavior 

of the frequency lines of the lowest two modes of wave propagation in 

the shell having fiber-reinforced composite facings differs considerably 

from those  for the shell with the beryllium facings;   those of  the  latter 

cross into  the  region of complex p and q.     The frequency lines of  the 

higher modes for the two shells are comparable for large wave numbers;   they 

(2) appear to become parallel to the ü * aK  X line.    For smaller wave numbers, 

within a certain range of  ;,   the frequency lines for  the shell with fiber- 
(b) 

reinforced composite facings become nearly parallel  to the W - b       .',  line. 

This tendency is not apparent  in the spectrum for the shell with  the 

beryllium facings. 

1 
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Fiq.   2    Cross-section of   the   three-layi-r  cylinder 
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Fiq. 7  Frequency spectrum (or  a  shell with aluninun core anJ fiber-relnror-^d 
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